#lang racket |
|
;; a type reduction-based approach to type checking |
|
(require redex "common.rkt") |
|
;; ----------------------------------------------------------------------------- |
;; syntax |
(define-language TLambda |
(e ::= n x (lambda (x t) e) (e e) (+ e e)) |
(n ::= number) |
(t ::= int (t -> t)) |
(x ::= variable-not-otherwise-mentioned)) |
|
(define in-TLambda? (redex-match? TLambda e)) |
|
;; ----------------------------------------------------------------------------- |
;; examples |
|
(define e1 |
(term (lambda (x int) (lambda (f (int -> int)) (+ (f (f x)) (f x)))))) |
|
(define e2 |
(term |
(lambda (x int) |
(lambda (f ((int -> int) -> int)) |
(f x))))) |
(define e3 (term (lambda ((x int)) (int -> int)))) |
|
(module+ test |
(test-equal (in-TLambda? e1) #true) |
(test-equal (in-TLambda? e2) #true) |
(test-equal (in-TLambda? e3) #false)) |
|
;; ----------------------------------------------------------------------------- |
;; (⊢ Γ e t) -- the usual type judgment for an LC language |
|
(define-extended-language TLambda-tc TLambda |
(e ::= .... t (t -> e)) |
(C ::= hole (lambda (x t) C) (C e) (e C) (+ C e) (+ e C) (t -> C))) |
|
(module+ test |
(test-equal (term (tc ,e1)) (term (int -> ((int -> int) -> int)))) |
|
;; a failure -- no types are returned |
(test-equal (term (tc ,e2)) #false)) |
|
(define-metafunction TLambda-tc |
tc : e -> t or #false |
[(tc t) t] |
[(tc e) |
(tc e_again) |
(where (e_again e_more ...) ,(apply-reduction-relation ->tc (term e)))] |
[(tc e_stuck) #false]) |
|
(define ->tc |
(reduction-relation |
TLambda-tc |
(--> (in-hole C n) (in-hole C int)) |
(--> (in-hole C (+ int int)) (in-hole C int)) |
(--> (in-hole C (lambda (x t) e)) (in-hole C (t -> (subst ((t x)) e)))) |
(--> (in-hole C ((t -> t_range) t)) (in-hole C t_range)))) |
|
;; ----------------------------------------------------------------------------- |
(module+ test |
(test-results)) |
|
|
;;; ------------------------------------------------------------ |
;;; common.rkt starts here |
|
#lang racket |
|
;; basic definitions for the Redex Summer School 2015 |
|
(provide |
;; Language |
Lambda |
|
;; Any -> Boolean |
;; is the given value in the expression language? |
lambda? |
|
;; x (x ...) -> Boolean |
;; (in x (x_1 ...)) determines whether x occurs in x_1 ... |
in |
|
;; Any Any -> Boolean |
;; (=α/racket e_1 e_2) determines whether e_1 is α-equivalent to e_2 |
;; e_1, e_2 are in Lambda or extensions of Lambda that |
;; do not introduce binding constructs beyond lambda |
=α/racket |
|
;; ((Lambda x) ...) Lambda -> Lambda |
;; (subs ((e_1 x_1) ...) e) substitures e_1 for x_1 ... in e |
;; e_1, ... e are in Lambda or extensions of Lambda that |
;; do not introduce binding constructs beyond lambda |
subst) |
|
;; ----------------------------------------------------------------------------- |
(require redex) |
|
(define-language Lambda |
(e ::= |
x |
(lambda (x_!_ ...) e) |
(e e ...)) |
(x ::= variable-not-otherwise-mentioned)) |
|
(define lambda? (redex-match? Lambda e)) |
|
(module+ test |
(define e1 (term y)) |
(define e2 (term (lambda (y) y))) |
(define e3 (term (lambda (x y) y))) |
(define e4 (term (,e2 e3))) |
|
(test-equal (lambda? e1) #true) |
(test-equal (lambda? e2) #true) |
(test-equal (lambda? e3) #true) |
(test-equal (lambda? e4) #true) |
|
(define eb1 (term (lambda (x x) y))) |
(define eb2 (term (lambda (x y) 3))) |
|
(test-equal (lambda? eb1) #false) |
(test-equal (lambda? eb2) #false)) |
|
;; ----------------------------------------------------------------------------- |
;; (in x x_1 ...) is x a member of (x_1 ...)? |
|
(module+ test |
(test-equal (term (in x (y z x y z))) #true) |
(test-equal (term (in x ())) #false) |
(test-equal (term (in x (y z w))) #false)) |
|
(define-metafunction Lambda |
in : x (x ...) -> boolean |
[(in x (x_1 ... x x_2 ...)) #true] |
[(in x (x_1 ...)) #false]) |
|
;; ----------------------------------------------------------------------------- |
;; (=α e_1 e_2) determines whether e_1 and e_2 are α equivalent |
|
(module+ test |
(test-equal (term (=α (lambda (x) x) (lambda (y) y))) #true) |
(test-equal (term (=α (lambda (x) (x 1)) (lambda (y) (y 1)))) #true) |
(test-equal (term (=α (lambda (x) x) (lambda (y) z))) #false)) |
|
(define-metafunction Lambda |
=α : any any -> boolean |
[(=α any_1 any_2) ,(equal? (term (sd any_1)) (term (sd any_2)))]) |
|
;; a Racket definition for use in Racket positions |
(define (=α/racket x y) (term (=α ,x ,y))) |
|
;; (sd e) computes the static distance version of e |
(define-extended-language SD Lambda |
(e ::= .... (K n)) |
(n ::= natural)) |
|
(define SD? (redex-match? SD e)) |
|
(module+ test |
(define sd1 (term (K 1))) |
(define sd2 (term 1)) |
|
(test-equal (SD? sd1) #true)) |
|
(define-metafunction SD |
sd : any -> any |
[(sd any_1) (sd/a any_1 ())]) |
|
(module+ test |
(test-equal (term (sd/a x ())) (term x)) |
(test-equal (term (sd/a x ((y) (z) (x)))) (term (K 2 0))) |
(test-equal (term (sd/a ((lambda (x) x) (lambda (y) y)) ())) |
(term ((lambda () (K 0 0)) (lambda () (K 0 0))))) |
(test-equal (term (sd/a (lambda (x) (x (lambda (y) y))) ())) |
(term (lambda () ((K 0 0) (lambda () (K 0 0)))))) |
(test-equal (term (sd/a (lambda (z x) (x (lambda (y) z))) ())) |
(term (lambda () ((K 0 1) (lambda () (K 1 0))))))) |
|
(define-metafunction SD |
sd/a : any ((x ...) ...) -> any |
[(sd/a x ((x_1 ...) ... (x_0 ... x x_2 ...) (x_3 ...) ...)) |
;; bound variable |
(K n_rib n_pos) |
(where n_rib ,(length (term ((x_1 ...) ...)))) |
(where n_pos ,(length (term (x_0 ...)))) |
(where #false (in x (x_1 ... ...)))] |
[(sd/a (lambda (x ...) any_1) (any_rest ...)) |
(lambda () (sd/a any_1 ((x ...) any_rest ...)))] |
[(sd/a (any_fun any_arg ...) (any_rib ...)) |
((sd/a any_fun (any_rib ...)) (sd/a any_arg (any_rib ...)) ...)] |
[(sd/a any_1 any) |
;; free variable, constant, etc |
any_1]) |
|
|
;; ----------------------------------------------------------------------------- |
;; (subst ([e x] ...) e_*) substitutes e ... for x ... in e_* (hygienically) |
|
(module+ test |
(test-equal (term (subst ([1 x][2 y]) x)) 1) |
(test-equal (term (subst ([1 x][2 y]) y)) 2) |
(test-equal (term (subst ([1 x][2 y]) z)) (term z)) |
(test-equal (term (subst ([1 x][2 y]) (lambda (z w) (x y)))) |
(term (lambda (z w) (1 2)))) |
(test-equal (term (subst ([1 x][2 y]) (lambda (z w) (lambda (x) (x y))))) |
(term (lambda (z w) (lambda (x) (x 2)))) |
#:equiv =α/racket) |
(test-equal (term (subst ((2 x)) ((lambda (x) (1 x)) x))) |
(term ((lambda (x) (1 x)) 2)) |
#:equiv =α/racket) |
(test-equal (term (subst (((lambda (x) y) x)) (lambda (y) x))) |
(term (lambda (y1) (lambda (x) y))) |
#:equiv =α/racket)) |
|
(define-metafunction Lambda |
subst : ((any x) ...) any -> any |
[(subst [(any_1 x_1) ... (any_x x) (any_2 x_2) ...] x) any_x] |
[(subst [(any_1 x_1) ... ] x) x] |
[(subst [(any_1 x_1) ... ] (lambda (x ...) any_body)) |
(lambda (x_new ...) |
(subst ((any_1 x_1) ...) |
(subst-raw ((x_new x) ...) any_body))) |
(where (x_new ...) ,(variables-not-in (term (any_body any_1 ...)) (term (x ...)))) ] |
[(subst [(any_1 x_1) ... ] (any ...)) ((subst [(any_1 x_1) ... ] any) ...)] |
[(subst [(any_1 x_1) ... ] any_*) any_*]) |
|
(define-metafunction Lambda |
subst-raw : ((x x) ...) any -> any |
[(subst-raw ((x_n1 x_o1) ... (x_new x) (x_n2 x_o2) ...) x) x_new] |
[(subst-raw ((x_n1 x_o1) ... ) x) x] |
[(subst-raw ((x_n1 x_o1) ... ) (lambda (x ...) any)) |
(lambda (x ...) (subst-raw ((x_n1 x_o1) ... ) any))] |
[(subst-raw [(any_1 x_1) ... ] (any ...)) |
((subst-raw [(any_1 x_1) ... ] any) ...)] |
[(subst-raw [(any_1 x_1) ... ] any_*) any_*]) |
|
;; ----------------------------------------------------------------------------- |
(module+ test |
(test-results)) |
|