Title

SRFI 45: Primitives for Expressing Iterative Lazy Algorithms

Author

André van Tonder

Status

This SRFI is currently in ``final'' status. To see an explanation of each status that a SRFI can hold, see here. You can access previous messages via the archive of the mailing list.

Abstract

Lazy evaluation is traditionally simulated in Scheme using delay and force. However, these primitives are not powerful enough to express a large class of lazy algorithms that are iterative. Indeed, it is folklore in the Scheme community that typical iterative lazy algorithms written using delay and force will often require unbounded memory.

Although varous modifications of delay and force had been proposed to resolve this problem (see e.g., the SRFI-40 discussion list ) they all fail some of the benchmarks provided below. To our knowledge, the current SRFI provides the first exhaustive solution to this problem.

As motivation, we first explain how the usual laziness encoding using only delay and force will break the iterative behavior of typical algorithms that would have been properly tail-recursive in a true lazy language, causing the computation to require unbounded memory.

The problem is then resolved by introducing a set of three operations:

    {lazy, delay, force}
which allow the programmer to succinctly express lazy algorithms while retaining bounded space behavior in cases that are properly tail-recursive. A general recipe for using these primitives is provided. An additional procedure {eager} is provided for the construction of eager promises in cases where efficiency is a concern.

Although this SRFI redefines delay and force, the extension is conservative in the sense that the semantics of the subset {delay, force} in isolation (i.e., as long as the program does not use lazy) agrees with that in R5RS. In other words, no program that uses the R5RS definitions of delay and force will break if those definition are replaced by the SRFI-45 definitions of delay and force.

Rationale

Wadler et al. in the paper How to add laziness to a strict language without even being odd [Wad98], provide a straightforward recipe for transforming arbitrary lazy data structures and algorithms into a strict language using delay and force.

However, it is known (see e.g. the SRFI-40 discussion list) that this transformation can lead to programs that suffer from unbounded space consumption, even if the original lazy algorithm was properly tail-recursive.

Example

Consider the following procedure, written in a hypothetical lazy language with Scheme syntax:
(define (stream-filter p? s)
  (if (null? s) '()
      (let ((h (car s))
            (t (cdr s)))
        (if (p? h)
            (cons h (stream-filter p? t))
            (stream-filter p? t)))))
According to the tranformation proposed in [Wad98], this algorithm can be espressed as follows in Scheme:
(define (stream-filter p? s)
  (delay (force 
          (if (null? (force s)) (delay '())
              (let ((h (car (force s))) 
                    (t (cdr (force s))))
                (if (p? h)
                    (delay (cons h (stream-filter p? t)))
                    (stream-filter p? t)))))))
The recipe, which we will modify below, is as follows:

However, evaluating the following with a sufficiently value for large-number will cause a typical Scheme implementation to run out of memory, despite the fact that the original (lazy) algorithm was iterative, only needing tail calls to evaluate the first element of the result stream.

(define (from n)
  (delay (cons n (from (+ n 1)))))

(define large-number 1000000000)

(car (force (stream-filter (lambda (n) (= n large-number)) 
                           (from 0))))

Why the space leak occurs

The problem occurring in the above stream-filter example can already be seen in the following simple infinite loop, expressed in our hypothetical lazy language as:
(define (loop) (loop))
which becomes, according to the [Wad98] transformation
(define (loop) (delay (force (loop))))
Taking the semantics of {delay, force} to be informally:
  (force (delay expr)) = update promise : (delay expr) 
                           with value of expr
                         return value in promise
we get
  (force (loop)) = update promise1 : (delay (force (loop)))
                     with value of (force (loop))
                   return value in promise1
                 = update promise1 : (delay (force (loop)))
                     with value of 
                       update promise2 : (delay (force (loop)))
                         with value of (force (loop))
                       return value in promise2
                   return value in promise1
                 = update promise1 : (delay (force (loop)))
                     with value of 
                       update promise2 : (delay (force (loop)))
                         with value of 
                            update promise3 : (delay (force (loop)))
                              with value of (force (loop))
                            return value in promise3
                       return value in promise2
                   return value in promise1
                 = ...
We see that an ever growing sequence of pending promises builds up until the heap is exhausted.

Why the above is not call-by-need

Expressing the above algorithm in terms of {delay, force} in fact does not correctly capture common notions of call-by-need evaluation semantics. For example, in a call-by-need language with naive graph reduction semantics, the above algorithm would run in bounded space since naive graph reduction is known to be tail-safe. For a good discussion of this issue, see e.g. R. Jones - Tail recursion without space leaks [Jon98].

Our problem may be regarded as analogous to graph reduction, with promises corresponding to graph nodes and force corresponding to reduction. As described by Jones, one has to be careful with the order in which nodes are evaluated and overwritten to avoid space leaks. In our context this would correspond to the order in which promises are evaluated and overwritten when forced.

In the above example, naive graph reduction would correspond to the promise at the root being overwritten at each step before the next iteration is evaluated, thus avoiding the need for a growing sequence of unfulfilled promises representing (unnecessary) future copy operations.

The solution

The accumulation of unnecessary promises in the above examples is a consequence of suspensions being forced in increasingly nested contexts. In order to correctly simulate naive graph reduction we should instead find a way of forcing tail suspensions iteratively, each time overwriting the previous result.

A solution to this problem exists and is described (in a different context) in Compiling higher order languages into fully tail-recursive portable C - Feely et al. [Fee97]. This reference introduces a method widely known as the trampoline technique for evaluating tail contexts iteratively.

Adapting the trampoline technique to the situation at hand, we introduce a new primitive lazy, which behaves like an "atomic" (delay (force ...)), and which will replace the combination (delay (force ...)) at procedure entry points. We also redefine delay and force as below:

; type Promise a = lazy (Promise a) | eager a 

(define-syntax lazy
  (syntax-rules ()
    ((lazy exp) 
     (box (cons 'lazy (lambda () exp))))))

(define (eager x)
  (box (cons 'eager x)))

(define-syntax delay
  (syntax-rules ()
    ((delay exp) (lazy (eager exp)))))

(define (force promise)
  (let ((content (unbox promise)))
    (case (car content)
      ((eager) (cdr content))
      ((lazy)  (let* ((promise* ((cdr content)))        
                      (content  (unbox promise)))                      ; *
                 (if (not (eqv? (car content) 'eager))                 ; *
                     (begin (set-car! content (car (unbox promise*)))
                            (set-cdr! content (cdr (unbox promise*)))
                            (set-box! promise* content)))
                 (force promise))))))

(*) These two lines re-fetch and check the original promise in case 
    the first line of the let* caused it to be forced.  For an example  
    where this happens, see reentrancy test 3 below.

(define (box x) (list x))
(define unbox car)
(define set-box! set-car!)
Our example is then coded (see the full recipe below)
  (define (loop) (lazy (loop)))
When we now evaluate (force (loop)), the force procedure will execute a top-level loop which will iteratively evaluate and overwrite subsequent suspensions.

In the language of [Fee97], the iterative loop in force plays the role of "dispatcher". The lazy form marks "control points" (procedure entry and return points). This technique is tail-safe because lazy procedures, instead of calling other lazy procedures directly, simply return a suspension representing a control point to be called upon the next iteration of the dispatcher loop in force. For more details, see [FMRW].

Specification

The following macros should be provided. The semantics, which is informally described here, should conform to that of the reference implementation below: The following procedures should be provided: The following reduction rules may be helpful for reasoning about these primitives. However, they do not express the memoization and memory usage semantics specified above:
  (force (delay expression)) -> expression
  (force (lazy  expression)) -> (force expression)
  (force (eager value))      -> value

The typing can be succinctly expressed as follows:


    type Promise a = lazy (Promise a) | eager a
    
           expression  : a
    ------------------------------
    (eager expression) : Promise a
    
           expression  : Promise a
    ------------------------------
    (lazy expression)  : Promise a  

           expression  : a
    ------------------------------
    (delay expression) : Promise a 

           expression  : Promise a 
    ------------------------------
    (force expression) : a 

Although this SRFI specifies an extension to the semantics of force, the extension is conservative in the sense that the semantics of the subset {delay, force} in isolation (i.e., as long as the program does not use lazy) agrees with that in R5RS.

Correct usage

We now provide a general recipe for using the primitives
    {lazy, delay, force}
to express lazy algorithms in Scheme. The transformation is best described by way of an example: Consider again the stream-filter algorithm, expressed in a hypothetical lazy language as
(define (stream-filter p? s)
  (if (null? s) '()
      (let ((h (car s))
            (t (cdr s)))
        (if (p? h)
            (cons h (stream-filter p? t))
            (stream-filter p? t)))))
This algorithm can be espressed as follows in Scheme:
(define (stream-filter p? s)
  (lazy
     (if (null? (force s)) (delay '())
         (let ((h (car (force s)))
               (t (cdr (force s))))
           (if (p? h)
               (delay (cons h (stream-filter p? t)))
               (stream-filter p? t))))))
In other words, we The only difference with the [Wad98] transformation described above is in replacing the combination (delay (force ...)) with (lazy ...) in the third rule.

More examples are included in the reference implementation below.

Implementation

The reference implementation uses the macro mechanism of R5RS. It does not use any other SRFI or any library.

A collection of benchmarks is provided. These check some special cases of the mechanism defined in this SRFI. To run them the user will need access to some way of inspecting the runtime memory usage of the algorithms, and a metric, left unspecified here, for deciding whether the memory usage is bounded. A leak benchmark is passed if the memory usage is bounded. Passing the tests does not mean a correct implementation.

Reference implementation

;=========================================================================
; Boxes

(define (box x) (list x))
(define unbox car)
(define set-box! set-car!)

;=========================================================================
; Primitives for lazy evaluation:

(define-syntax lazy
  (syntax-rules ()
    ((lazy exp)
     (box (cons 'lazy (lambda () exp))))))

(define (eager x)
  (box (cons 'eager x)))

(define-syntax delay
  (syntax-rules ()
    ((delay exp) (lazy (eager exp)))))

(define (force promise)
  (let ((content (unbox promise)))
    (case (car content)
      ((eager) (cdr content))
      ((lazy)  (let* ((promise* ((cdr content)))        
                      (content  (unbox promise)))                      ; * 
                 (if (not (eqv? (car content) 'eager))                 ; *
                     (begin (set-car! content (car (unbox promise*)))
                            (set-cdr! content (cdr (unbox promise*)))
                            (set-box! promise* content)))
                 (force promise))))))

; (*) These two lines re-fetch and check the original promise in case 
;     the first line of the let* caused it to be forced.  For an example  
;     where this happens, see reentrancy test 3 below.

;=========================================================================
; TESTS AND BENCHMARKS:
;=========================================================================

;=========================================================================
; Memoization test 1:

(define s (delay (begin (display 'hello) 1)))

(force s)
(force s)
               ;===> Should display 'hello once

;=========================================================================
; Memoization test 2:

(let ((s (delay (begin (display 'bonjour) 2))))
  (+ (force s) (force s)))

               ;===> Should display 'bonjour once

;=========================================================================
; Memoization test 3: (pointed out by Alejandro Forero Cuervo) 

(define r (delay (begin (display 'hi) 1)))
(define s (lazy r))
(define t (lazy s))

(force t)
(force r)
               ;===> Should display 'hi once

;=========================================================================
; Memoization test 4: Stream memoization 

(define (stream-drop s index)
  (lazy
   (if (zero? index)
       s
       (stream-drop (cdr (force s)) (- index 1)))))

(define (ones)
  (delay (begin
           (display 'ho)
           (cons 1 (ones)))))

(define s (ones))

(car (force (stream-drop s 4)))
(car (force (stream-drop s 4)))

               ;===> Should display 'ho five times

;=========================================================================
; Reentrancy test 1: from R5RS

(define count 0)
(define p
  (delay (begin (set! count (+ count 1))
                (if (> count x)
                    count
                    (force p)))))
(define x 5)
(force p)                     ;===>  6
(set! x 10)
(force p)                     ;===>  6
       

;=========================================================================
; Reentrancy test 2: from SRFI 40

(define f
  (let ((first? #t))
    (delay
      (if first?
          (begin
            (set! first? #f)
            (force f))
          'second))))

(force f)                     ;===> 'second 

;=========================================================================
; Reentrancy test 3: due to John Shutt

(define q
  (let ((count 5))
    (define (get-count) count)
    (define p (delay (if (<= count 0)
                         count
                         (begin (set! count (- count 1))
                                (force p)
                                (set! count (+ count 2))
                                count))))
    (list get-count p)))
(define get-count (car q))
(define p (cadr q))

(get-count)  ; =>   5
(force p)    ; =>   0
(get-count)  ; =>   10

;=========================================================================
; Test leaks:  All the leak tests should run in bounded space.

;=========================================================================
; Leak test 1: Infinite loop in bounded space.

(define (loop) (lazy (loop)))
;(force (loop))                               ;==> bounded space

;=========================================================================
; Leak test 2: Pending memos should not accumulate 
;              in shared structures.

(define s (loop))
;(force s)                                    ;==> bounded space 

;=========================================================================
; Leak test 3: Safely traversing infinite stream.

(define (from n)
  (delay (cons n (from (+ n 1)))))

(define (traverse s)
  (lazy (traverse (cdr (force s)))))

;(force (traverse (from 0)))                  ;==> bounded space

;=========================================================================
; Leak test 4: Safely traversing infinite stream 
;              while pointer to head of result exists.

(define s (traverse (from 0)))  
;(force s)                                    ;==> bounded space

;=========================================================================
; Convenient list deconstructor used below.

(define-syntax match
  (syntax-rules ()
    ((match exp 
       (()      exp1)
       ((h . t) exp2))
     (let ((lst exp))
       (cond ((null? lst) exp1)
             ((pair? lst) (let ((h (car lst))
                                (t (cdr lst)))
                            exp2))
             (else 'match-error))))))

;========================================================================
; Leak test 5: Naive stream-filter should run in bounded space.
;              Simplest case.

(define (stream-filter p? s)
  (lazy (match (force s)
          (()      (delay '())) 
          ((h . t) (if (p? h)
                       (delay (cons h (stream-filter p? t)))
                       (stream-filter p? t))))))

;(force (stream-filter (lambda (n) (= n 10000000000))
;                      (from 0)))
                                             ;==> bounded space

;========================================================================
; Leak test 6: Another long traversal should run in bounded space.

; The stream-ref procedure below does not strictly need to be lazy.  
; It is defined lazy for the purpose of testing safe compostion of 
; lazy procedures in the times3 benchmark below (previous 
; candidate solutions had failed this).  

(define (stream-ref s index)
  (lazy
   (match (force s)
     (()      'error)
     ((h . t) (if (zero? index)
                  (delay h)
                  (stream-ref t (- index 1)))))))

; Check that evenness is correctly implemented - should terminate:

(force (stream-ref (stream-filter zero? (from 0))
                   0))                              ;==> 0

(define s (stream-ref (from 0) 100000000))
;(force s)                                          ;==> bounded space

;======================================================================
; Leak test 7: Infamous example from SRFI 40. 

(define (times3 n)
  (stream-ref (stream-filter
               (lambda (x) (zero? (modulo x n)))
               (from 0))
              3))

(force (times3 7))
;(force (times3 100000000))                        ;==> bounded space

References

[Wad98] Philip Wadler, Walid Taha, and David MacQueen. How to add laziness to a strict language, without even being odd, Workshop on Standard ML, Baltimore, September 1998

[Jon92] Richard Jones. Tail recursion without space leaks, Journal of Functional Programming, 2(1):73-79, January 1992

[Fee97] Marc Feeley, James S. Miller, Guillermo J. Rozas, Jason A. Wilson, Compiling Higher-Order Languages into Fully Tail-Recursive Portable C, Rapport technique 1078, département d'informatique et r.o., Université de Montréal, août 1997.

Copyright

Copyright (C) André van Tonder (2003). All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.


Author: André van Tonder
Editor: Francisco Solsona
Last modified: Tue Dec 30 11:21:21 CST 2003